Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2062, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453927

RESUMEN

Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.

2.
Adv Mater ; 36(11): e2308243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102967

RESUMEN

The development of facile, efficient synthesis method to construct low-cost and high-performance single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is extremely important, yet still challenging. Herein, an atomically dispersed N, S co-doped carbon with abundant vacancy defects (NSC-vd) anchored Fe single atoms (SAs) is reported and a vacancy defects inductive effect is proposed for promoting electrocatalytic ORR. The optimized catalyst featured of stable Fe─N3 S1 active sites exhibits excellent ORR activity with high turnover frequency and mass activity. In situ Raman, attenuated total reflectance surface enhanced infrared absorption spectroscopy reveal the Fe─N3 S1 active sites exhibit different kinetic mechanisms in acidic and alkaline solutions. Operando X-ray absorption spectra reveal the ORR activity of Fe SAs/NSC-vd catalyst in different electrolyte is closely related to the coordination structure. Theoretical calculation reveals the upshifted d band center of Fe─N3 S1 active sites facilitates the adsorption of O2 and accelerates the kinetics process of *OH reduction. The abundant vacancy defects around the Fe─N3 S1 active sites balance the OOH* formation and *OH reduction, thus synergetically promoting the electrocatalytic ORR process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...